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Abstract
Delta synchronization (sync) is known to be crucial for
network-level efficiency of cloud storage services (e.g.,
Dropbox). Practical delta sync techniques are, how-
ever, only available for PC clients and mobile apps,
but not web browsers—the most pervasive and OS-
independent access method. To understand obstacles of
web-based delta sync, we implemented a traditional delta
sync solution (named WebRsync) for web browsers us-
ing JavaScript, and find that WebRsync severely suffers
from the inefficiency of JavaScript execution inside web
browsers, thus leading to frequent stagnation and even
crashing. Given that the computation burden on the web
browser mainly stems from data chunk search and com-
parison, we reverse the traditional delta sync approach by
lifting all chunk search and comparison operations from
the client side into the server side. Inevitably, this brings
enormous computation overhead to the servers. Hence,
we further leverage locality matching and a more effi-
cient checksum to reduce the overhead. The resulting
solution (called WebR2sync+) outpaces WebRsync by
an order of magnitude, and it is able to simultaneously
support ∼7300 web clients’ delta sync using an ordinary
VM server based on a Dropbox-like system architecture.

1 Introduction

Recent years have witnessed enormous popularity of
cloud storage services, such as Dropbox, Google Drive,
iCloud Drive, and Microsoft OneDrive. They have not
only provided a convenient and pervasive data store for
billions of Internet users [5], but also become a critical
component of numerous online applications (e.g., Drop-
box’s support for DocuSign, Google Drive’s support for
Gmail, and OneDrive’s support for Office 365).

The popularity of cloud storage services inevitably
brings tremendous network traffic overhead to both the
client and cloud sides [15]. Therefore, a lot of efforts
have been made to improve the network-level efficiency
of cloud storage services, including batched synchro-
nization (sync), deferred sync, delta sync, compression
and deduplication [12, 14, 17, 18]. Among these efforts,
delta sync is known to be of particular importance for its
fine granularity (i.e., the client only sends the changed

content of a file to the cloud), thus achieving significant
traffic savings in the presence of users’ file edits [19].

Unfortunately, delta sync is currently only practical for
PC clients and mobile apps, but not web browsers—the
most pervasive and OS-independent access method [17].
For example, after a file f is edited into a new version f ′

by the user, Dropbox’s PC client or mobile app only up-
loads the altered bits to the cloud; in contrast, the web
browser has to upload the whole content of f ′ to the
cloud. This gap severely affects web-based user experi-
ences in terms of both sync performance and traffic cost.

To understand the potential obstacles of web-based
delta sync, we implement a delta sync solution (referred
to as WebRsync) for web browsers using JavaScript
based on rsync [7], the de facto delta sync protocol for
PC clients. Also, we develop an automated tool (called
StagMeter) to accurately measure the stagnation of web
browsers. Our experimental results show that WebRsync
severely suffers from the inefficiency of JavaScript run-
ning inside web browsers. Under typical file editing
workloads, WebRsync is slower than PC client-based
delta sync by up to 25 times, thus causing web browsers
to frequently freeze and even crash.

Specifically, when a user edits a file from f to f ′,
WebRsync first requests the server side to execute (data)
chunk segmentation and fingerprinting operations on f ,
and then requests the client side to perform chunk search
and comparison operations on f ′. During the process,
the computation overhead on the client side is larger than
that on the server side by around 7 times. More in detail,
the client-side computation burden mainly stems from
chunk search (∼65%) and comparison (∼22%).

Motivated by the above observations, our first effort is
to “reverse” the WebRsync process by handing all chunk
search and comparison operations over to the server side.
Meanwhile, chunk segmentation and fingerprinting oper-
ations are shifted to the client side. The resulting solution
is referred to as WebR2sync, denoting web-based reverse
rsync (more details are described in §3.1 and Figure 4).

Although WebR2sync significantly cuts the compu-
tation burden on the web client (and thus effectively
avoids stagnation/crashing), it brings enormous compu-
tation overhead to the server side. To this end, we make
two-fold additional efforts to optimize the server-side
computation overhead. First, we exploit the locality of
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Figure 1: Average sync time vs. edit
size to a typical text file.
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Figure 2: Sync time decomposition
for WebRsync.

1 10 100 1K 10K 100K
Edit Size (Byte)

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n 
(%

) WebRsync
rsync

Figure 3: Average CPU utilization
vs. edit size to a typical text file.

users’ file edits which can help bypass most (∼90%)
chunk search operations in real usage scenarios. This
can reduce nearly a half of server-side computation over-
head. Second, by replacing the relatively secure, expen-
sive MD5 algorithm with the more efficient, pseudoran-
dom SipHash algorithm, we can reduce the complexity
of chunk comparison by around 6 times.

Through the above efforts, our final solution (named
WebR2sync+) outpaces WebRsync by around an order
of magnitude, approaching the performance of PC client-
based rsync. Also, it is able to simultaneously sup-
port ∼7300 web clients’ delta sync using an ordinary
VM server based on a Dropbox-like system architec-
ture. This throughput (∼7300) is as 4 times as that of
WebR2sync and as 9 times as that of NoWebRsync 1.
All source codes of WebRsync (including StagMeter),
WebR2sync and WebR2sync+ are publicly available at
https://WebDeltaSync.github.io.

2 Motivating Study

To quantitatively understand the reason why web-based
delta sync is not supported by today’s cloud storage ser-
vices, we implement the WebRsync solution and mea-
sure its performance using the StagMeter tool as follows.

WebRsync. We implement WebRsync by adapting
the working procedure of rsync (demonstrated in Fig-
ure 4(a)) to the web browser scenario. Moreover, the ar-
chitecture of WebRsync follows Dropbox’s system archi-
tecture. Specifically, we implement the client side based
on the HTML5 File APIs [6] and the WebSocket proto-
col, using 1500 lines of JavaScript code. The server side
is developed based on the node.js framework, using 500
lines of node.js code and 600 lines of C++ code. Similar
to Dropbox (on the server side), the web service runs on

1NoWebRsync refers to the approach that uploads the entire file for
synchronization without delta sync. Note that NoWebRsync is the com-
mon approach for web-based access adopted by current cloud storage
services such as Dropbox, SugarSync and iCloud Drive.

a VM server hosted on Aliyun ECS [2], and the file con-
tent is stored in object storage hosted on Aliyun OSS [3].
More details on the server, client and network configura-
tions are described in §4.1 and Figure 7.

To compare the performance of WebRsync and
rsync, we do a random edit (an insertion or a dele-
tion) with different sizes on a typical text file every 10
seconds. Here typical means that we use a real-world
cloud storage dataset released in [17], where the average
file size is nearly 1 MB and the median file size is 7.5
KB. As shown in Figure 1, the sync time of WebRsync is
significantly longer than that of rsync by 14–25 times.
In other words, WebRsync is much slower than rsync
on handling the same file edit. Further, we break down
the sync time of WebRsync into three stages as depicted
in Figure 2. Clearly, the vast majority of sync time is
spent at the client side, indicating that the slowness of
WebRsync is owing to the inefficiency of the browser.
Additionally, Figure 3 shows that the CPU utilization
of WebRsync almost doubles that of rsync, because
JavaScript programs consume enormous CPU resources.

In summary, WebRsync costs not only more sync time
but also more computation resources on the client side,
thus causing the web browser to frequently stagnate and
even crash. Here “stagnate” means that the browser does
not react to user actions (e.g., mouse clicks) in time, and
“crash” means that the browser never reacts to user ac-
tions. We further develop the StagMeter tool as follows
to measure the stagnation of the browser.

StagMeter. Although stagnation of the browser can be
perceived by users, they can hardly be quantified. Thus,
we automate the measurement of stagnation time by inte-
grating a snippet of JavaScript code (referred to as Stag-
Meter) into the browser. The snippet periodically2 prints
the current timestamp on the concerned web page (e.g.,
the web page that executes delta sync). If the current
timestamp (say t) is successfully printed at the moment,

2By default we set the period as 100 ms, so as to simulate the mini-
mum intervals of common web users’ operations.

https://WebDeltaSync.github.io
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Figure 4: Flow charts of WebRsync and WebR2sync.
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Figure 5: Printed timestamps for the first
second and the associated CPU utilization.

there is no stagnation; otherwise, there is a stagnation
and then the printing of the current timestamp will be
postponed to t ′ > t. Thereby, the corresponding stagna-
tion time is calculated as t ′− t.

Using StagMeter, we measure and visualize the stag-
nation of WebRsync (on handling various file-edit work-
loads) in Figure 5. Here StagMeter only attempts to print
10 timestamps for the first second. Therefore, spaces be-
tween consecutive timestamps represent stagnation, and
larger spaces imply more severe stagnation. Meanwhile,
as indicated in Figure 5, stagnation cases are directly as-
sociated with high CPU utilization.

3 Design and Implementation

In this section, we first present the WebR2sync solution
which implements the reverse process of WebRsync, and
then describe the server-side optimizations for mitigating
the computation overhead on servers.

3.1 WebR2sync

Before we describe the design of WebR2sync, we first
review the work flow of WebRsync as a comparison. As
demonstrated in Figure 4(a), in WebRsync when a user
edits a file from f to f ′, the client instantly sends a re-
quest to the server for the file synchronization. On re-
ceiving the request, the server first executes (data) chunk
segmentation and fingerprinting operations on f (which
is available on the cloud side), and then returns a check-
sum list of f to the client. Except for the last chunk, each
data chunk is 8 KB in size. Thus when f is 1 MB in size,
its checksum list contains 128 weak rolling 32-bit check-
sums as well as 128 strong 128-bit MD5 checksums [7].
After that, based on the checksum list of f , the client first
performs chunk search and comparison operations on f ′,
and then generates both the matching tokens and literal
bytes. The matching tokens indicate the overlap between
f and f ′, while the literal bytes represent the novel parts

in f ′ relative to f . Both of them are sent to the server for
constructing f ′. Finally, the server returns an acknowl-
edgment to the client to conclude the process.

As depicted in Figure 4(b), WebR2sync implements
the reverse process of WebRsync by handing computa-
tion intensive search and comparison operations over at
the server side, and meanwhile shifting the lightweight
segmentation and fingerprinting operations to the client
side. Accordingly, the checksum list of f ′ is generated
by the client and the matching tokens are generated by
the server, while the literal bytes are still generated by
the client. Note that on the server side, the search and
comparison operations are implemented in C/C++ rather
than in JavaScript. Therefore, WebR2sync can not only
avoid stagnation/crashing for the web client, but also ef-
fectively shorten the duration of the whole sync process.

3.2 Server-side Optimization

Although WebR2sync significantly reduce the computa-
tion burden on the web client, it brings enormous com-
putation overhead to the server side. We make two-fold
efforts to optimize the server-side computation overhead.

Exploiting locality of file edits in chunk search. When
the server receives a checksum list from the client,
WebR2sync uses a 3-level chunk searching scheme to
figure out matched chunks between f and f ′, as demon-
strated in Figure 6 (following the 3-level chunk search-
ing scheme of rsync [7]). Specifically, in the checksum
list of f ′ there is a 32-bit weak rolling checksum (calcu-
lated by the Adler32 algorithm [13]) as well as a 128-bit
strong MD5 checksum for each data chunk in f ′. When
this checksum list is sent to the server, the server lever-
ages an additional (rolling checksum) hash table where
every entry is a 16-bit hash code of the 32-bit rolling
checksum [7]. The checksum list is then sorted accord-
ing to the 16-bit hash code of the 32-bit rolling check-
sums. Note that a 16-bit hash code can point to multiple
rolling/MD5 checksums. To find each matched chunk
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Figure 6: The 3-level chunk searching scheme used by
rsync and WebR2sync.

between f and f ′, the 3-level chunk searching scheme al-
ways goes from the 16-bit hash code to the 32-bit rolling
checksum and further to the 128-bit MD5 checksum.

The 3-level chunk searching scheme can effectively
minimize the computation overhead for general file-
edit patterns, particularly random edits to a file. How-
ever, it has been observed that real-world file edits typi-
cally follow a local pattern rather a general/random pat-
tern [20, 24–26]. This offers an opportunity to bypass a
considerable portion of (unnecessary) chunk search op-
erations. In essence, give that edits to a file are typically
local, when we find that the i-th chunk of f ′ matches the
j-th chunk of f , the (i+1)-th chunk of f ′ is highly likely
to match the ( j+1)-th chunk of f . Therefore, we “sim-
plify” the 3-level chunk searching scheme by directly
comparing the MD5 checksums of the (i+ 1)-th chunk
of f ′ and the ( j+1)-th chunk of f . If the two chunks are
identical, we move forward to the next chunk; otherwise,
we return to the regular 3-level chunk searching scheme.

Replacing MD5 with SipHash in chunk comparison.
Besides exploiting locality, we notice that the majority of
server-side computation overhead is attributed to the cal-
culations of MD5 checksums. Thus, we wonder whether
the usage of MD5 is necessary in chunk comparison.

MD5 was initially designed as a cryptographic hash
function for generating secure and low-collision hash
code [23], which makes it quite computation intensive.
In our scenario, however, it is not necessary to use such
a computationally expensive hash function, because our
purpose is just to obtain a low collision probability. In
fact, we can employ the HTTPS protocol for data ex-
change between the web client and server to ensure
the security. Driven by this insight, we decide to re-
place MD5 with a lightweight pseudorandom hash func-
tion [11] in order to reduce the computational overhead.

Quite a few pseudorandom hash functions can satisfy
our goal, such as Spooky [16], FNV [21], CityHash [22],
SipHash [10], and Murmur3 [9]. Among them, some
are very lightweight but have high collision probabili-
ties. For example, the computation overhead of MD5 is
around 5 to 6 cycles per byte [4] while the computation

Table 1: A comparison of pseudorandom hash functions
Hash Function Collision Probability Cycles per Byte

MD5 Low 5.58
Murmur3 High 0.33
CityHash High 0.23

FVN High 1.75
Spooky High 0.14
SipHash Low 1.13

overhead of CityHash is merely 0.23 cycle per byte [8],
but the collision probabilities of CityHash is quite high.
On the other hand, some pseudorandom hash functions
have extremely low collision probabilities but are slow.
As listed in Table 1, SipHash is a sweet spot—its compu-
tation overhead is about 1.13 cycles per byte and its col-
lision probability is acceptable (keep safe under flood at-
tack). By replacing MD5 with SipHash in our web-based
delta sync solution, we manage to reduce the computa-
tion complexity of chunk comparison by nearly 6 times.

3.3 Implementation
The client side of WebR2sync+ is implemented based on
the HTML5 File APIs, the WebSocket protocol, and a
Javascript implementation of SipHash-2-4 [1], with 1700
lines of JavaScript code in total. The server side of
WebR2sync+ is developed based on the node.js frame-
work and C++ processing module. The former (500 lines
of node.js code) handles the user requests, and the latter
(1000 lines of C++ code) embodies the reverse delta sync
process together with the two-fold optimizations.

4 Evaluation

In this section, we show the performance and overhead of
WebR2sync+ in comparison to WebRsync, WebR2sync
and PC client-based rsync under typical workloads.

4.1 Experiment Setup
Like WebRsync, the server side of WebR2sync+ adopts
a Dropbox-like system architecture by running the web
service on a VM (with a quad-core Intel Xeon CPU
@2.5GHz and 16-GB memory) hosted on Aliyun ECS,
and all file content is stored in object storage hosted on
Aliyun OSS. The ECS VM and OSS storage locate at
the same data center so there is no bottleneck between
them. Also, the client side of WebR2sync+ is integrated
into the Google Chrome browser (Windows version 56.0)
running on a laptop with a quad-core Intel Core-i5 CPU
@2.8GHz, 16-GB memory, and an SSD disk.

More in detail, the server side and client side lie in
different cities (i.e., Shanghai and Beijing) and different
ISPs (i.e., China Unicom and CERNET), as depicted in



ECS VM @ UniCom
OSS Storage @ UniCom

Web Client @ CERNET

Figure 7: Basic experiment setup vi-
sualized in a map of China.

1 10 100 1K 10K 100k
Edit Size (Byte)

10-1

100

101

Sy
nc

 T
im

e 
(S

ec
on

d) WebRsync
WebR2sync
WebR2sync+
rsync

Figure 8: Average sync time vs. edit
size to a typical text file.
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Figure 9: Sync time decomposition
for WebR2sync+.
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Figure 10: Client-side average CPU
utilization vs. edit size to a typical
text file.
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Figure 11: Server-side average CPU
utilization vs. edit size to a typical
text file.
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Figure 7. Their network RTT is ∼30 ms and their net-
work bandwidth is ∼100 Mbps. To evaluate the real-
world performance of WebR2sync+ (mentioned in §2),
we do a random edit with different sizes to a typical text
file every 10 seconds, thus emulating various workloads
of practical users’ file edits [17].

4.2 Results

Synchronization time. We measure the sync time of
WebR2sync+. As demonstrated in Figure 8, the sync
time of WebR2sync+ is substantially shorter than that
of WebR2sync (by 2 to 3 times) and WebRsync (by 15
to 20 times). In other words, WebR2sync+ outpaces
WebRsync by an order of magnitude; it has comparable
performance as PC client-based rsync.

Further, we break down the sync time of WebR2sync+
into three stages, as shown in Figure 9. Comparing Fig-
ures 9 and 2 leads to two major observations. First,
the majority of sync time is spent at the client side for
WebRsync, while it is spent for network latency for
WebR2sync+. Therefore, the web browser does not stag-
nate or crash. Second, the server-side sync time is still
much shorter than the client-side sync time, which con-
firms the efficacy of our server-side optimizations.

CPU utilization. We show the client-side and server-
side CPU utilizations in Figure 10 and Figure 11 re-

spectively. On the client side, WebR2sync+ consumes
less CPU resources than WebRsync and WebR2sync,
while PC client-based rsync consumes the least CPU
resources. On the server side, the CPU utilizations of all
solutions are similar.

Throughput. WebR2sync+ can simultaneously support
∼7300 web clients’ delta sync using an ordinary VM
server under typical workloads (refer to Figure 12). This
throughput is as 4 times as that of WebR2sync/rsync
and as 9 times as that of NoWebRsync.

5 Future Work

In the near future, we plan to evaluate the performance
of WebR2sync+ in more aspects and details, such as the
traffic overhead, deduplication and delta-encoding rates,
and the efficiency of the three optimizations (i.e., reverse
rsync, locality matching, and a weaker checksum).
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